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Hamiltonian generalizations of Einstein's theory of gravitation introducing a 
laminar structure of spacetime are discussed. The concepts of general relativity 
and of quasi-inertial coordinate systems are extended beyond their traditional 
scope. Not only the metric, but also the coordinate system, if quantized, 
undergoes quantum fluctuations. 

1. INTRODUCTION 

The problem of reconciling general relativity (GR) with quantum theory 
is still open. The main difficulties may be seen in the fact that Einstein's general 
theory of relativity is not canonical in the usual sense of this word: the metric 
tensor components g0~ (P = 0, 1, 2, 3) are not canonical variables, since the 
Lagrangian is not quadratic in the time derivatives ~0~,, in contradistinction 
to g~l (k, l-- 1, 2, 3). The Lagrangian does not contain ~0o at all and is only 
linear in the three quantities ~ok. Hence, the equations defining the canon- 
ically conjugate momenta 

~o .  ( 1 ) 

are not soluble with respect to ~ou. Consequently, go, are to be regarded as 
variables of constraints, which presents serious difficulties with quantization. 

Serious difficulties connected with defining energy-momentum and the 
Hamiltonian for the pure gravitational field arise as well. The Einstein 
quantities r~ possibly representing the energy-momentum-stress tensor of 
the free gravitational field do not transform like genuine tensor components; 
therefore, r~ was called a "pseudotensor." Moreover, the energy density 
r0 ~ may be made to vanish at an arbitrary point of spacetime by a mere 
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coordinate transformation, so that energy in GR is to be regarded as non- 
localizable. According to the arbitrariness of the choice of the gauge, i.e., 
of the coordinate system, one gets different and inequivalent expressions for 
the generator of infinitesimal translations in spacetime which in other field 
theories play the role of energy-momentum. The above-mentioned properties 
are closely related with the nonexistence of privileged coordinate systems 
playing a similar role to inertial ones in special relativity. 

If  one tries to perform a canonical formulation in an obviously and 
explicitly gauge-invariant form, i.e., independently of a choice of the coordi- 
nate system, one gets a startling result: The Hamiltonian of a free gravita- 
tional field is found to be zero, H =  0. From this it follows that the dynamics 
of explicitly covariant gravity must be frozen! This fact is explicable in the 
following way: inasmuch as in GR all one-parameter families of spacelike 
hypersurfaces t=  const are on equal footing, no privileged lapse of time 
algorithm exists and Nature "cannot decide" for any specific choice of an 
infinitesimal translation in the timelike direction. 

2. A CANONICAL EXTENSION 

The way out of these difficulties that we propose is radical: we outfit 
spacetime with a kind of laminar structure and relax Einstein's principle of 
general covariance (GC). This may be done in the following way: Let us 
add to the usual Lagrangian 5r of GR an additional term 

--, 5f + ~ where 

with Uv being linear functions of the 
examples are 

and 

c2 =e U~g""U~ (2) 
2 

time derivatives g0u. Interesting 

= (3-) 

where g is the determinant of the metric tensor components. 
Obviously, the introduction of such additional terms into the Lagrang- 

ian spoils its covariance and yields modified field equations 

G u v + ~.p v = tr T ~ v (4) 

which do not satisfy Bianchi identities and, consequently, determine not only 
the geometry of spacetime, but also a privileged class of coordinate systems, 
or in the case (3") at least one privileged coordinate, viz. the time coordinate. 

t :v= g v) (3') 
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The loss of GC is, however, richly recompensated by the advantage of 
getting a genuine Hamiltonian formalism admitting a vast class of canonical 
transformations. A general covariance under coordinate transformations has 
been lost, but this loss has been compensated by another general covariance: 
under canonical transformations! 

It should be noticed that by specializing the initial conditions so that 
the terms U~ become equal to zero 

U~=0 (5) 

one has introduced a further specialization of coordinates. In the case 
(3') or (3") this means either 

?u(~2~ g~ ~) =0 or c3v.f~ = 0 (3a) 

the former denoting de Donder-Fock coordinates, while the latter is satisfied 
by putting g = const, which means invariance under unimodular coordinate 
transformations. This causes the additional terms in the field equations to 
vanish, so that their usual form is regained, 

G~V=tcT  u~ if Ux=0 (6) 

which follows from the fact that 2 is bilinear and G~ linear in U~. From this 
it is seen that the generalized formalism contains all the Einstein solutions, i.e., 
all Einsteinnian spacetimes, although they appear described in special- 
ized coordinates. Hence, the postulate of correspondence with Einstein's 
original theory is still satisfied. Being truly canonical and Hamiltonian, such 
a formalism is quantizable, at least formally, disregarding the convergence 
problems] 

3. THE PROBLEMS OF GENERAL RELATIVITY 

The next problems are connected with the circumstance that there exists 
an infinite variety of possible choices of the term Uv, all of them yielding 
Lagrangians quadratic in the time derivatives of all metric tensor compo- 
nents, and there appears the question of their equivalence or inequivalence. 
If they are not equivalent, then there arises the problem of selecting a proper 
form of Uv. In quantum GR there appears the fundamental problem of 
dividing physical reality into two parts: the object of measurement and the 
apparatus together with well-defined measurement conditions (preparation 
of the act of measurement). A system of reference together with a comoving 
coordinate system belongs to the latter. The choice of a particular U~ must 
be dictated by a particular division of physical reality into subjective and 
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objective aspects of observations whereby two different choices may be equ- 
ally well acceptable although they do not need to be unitarily equivalent. A 
priori there exist two alternatives: one is to regard all possible forms of Uv 
on an equal footing, even if they are inequivalent, whereby the existence of 
a variety of different formalisms obtained in this way may be just interpreted 
as reflecting a generally relativistic character of the theory: even the Lagrang- 
ian is not to be assumed to be an absolute element of the formalism (i.e., 
does not need to be a scalar or differ from a scalar by a divergence) and 
does not need to be a priori fixed in a unique way, but it may be adjustable 
relative to the assumed partition of physical reality into object and apparatus 
of measurement. This means a radical modification of  the concept o f  relativity. 

The other possibility is to admit that in principle we are unable to 
construct an arbitrary apparatus of measurement and to secure arbitrary 
means of observation, but have to make a special choice of Uv and, conse- 
quently, of the Lagrangian. Thus, our limited means of observation might 
lead to specialized Uv and, consequently, specialized frames of reference and 
coordinate systems fixed to the bodies forming the reference frame. In such 
cases a privileged role of some types of frames of reference and of comoving 
coordinates should be also distinguished on some aesthetic basis: either 
assuming (3') and its vanishing, which denotes the introduction of de 
Donder-Fock coordinates constituting a natural generalization of Lorentz 
conditions so much distinguished in electrodynamics, or vanishing (3'), 
which means that the generalized theory is invariant under the group of 
unimodular coordinate transformations x ~ --* 2~ satisfying the condition 

det 0flu = 1 (7) 
~x v 

The unimodular group is the most natural and most general subgroup of 
Einstein's group of general transformations enabling us to treat tensor densi- 
ties on an equal footing with tensors. General covariance in its traditional 
sense has been destroyed, but it is intelligible in a quantum theory of gravity, 
where the choice of coordinates not only means attaching arbitrary names 
to the points of spacetime, but also a partition of physical reality into the 
object and the means of observation, into substance and form. 

Certainly, it is difficult to accept a formalism which rejects the tradi- 
tional dogma of general covariance. However, since this new formalism 
describes equally well all crucial effects--red shift, deflection of light, and 
perihelion motion of Mercury--such objections cannot be regarded as decis- 
ive and conclusive and such reservations can only be regarded as dogmatic 
in character. 

Moreover, a general covariance may be still introduced, so to say "by 
the back door," if one assumes that the solutions g~ ~ of the field equations 
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form a tensor under general coordinate transformations and transforms 
these solutions (but not the Lagrangian!) in an arbitrary way. This is already 
sufficient to satisfy the relativistic requirement, namely that physical phe- 
nomena should be independent of the mode of their description, or of the 
names attached to the points of spacetime. 

4. SUPPLEMENTARY CONDITIONS 

Equations (4) derivable directly from the canonically extended formal- 
ism are poorer in their form than the traditional equations of Einstein since 
they have been expressed in specialized coordinates determined also from 
these equations. By specializing these coordinates still more by means of the 
supplementary conditions (5), these equations regain their traditional form 
(6) at a cost of a still greater restriction of the class of privileged coordinate 
systems. The conditions (5) may be regarded as constraints, but of a weak 
form, since they do not modify the original solutions, but merely select their 
subclass. 

The conditions (5) are easy to introduce within the framework of the 
classical formalism, but satisfying them in the quantized version of the theory 
is problematic. First of all, they cannot be satisfied as conditions upon the 
operators themselves, but only as conditions imposed upon the state vectors. 
Then we run a risk of getting inconsistencies, since it cannot be a priori 
guaranteed that for any type of the operator Uv their commutators will not 
produce again and again new conditions upon the state vector. Therefore, 
we prefer not to introduce any supplementary conditions at the whole time 
interval, but to introduce only suitable initial (and/or final) conditions. 

5. INERTIAL COORDINATES IN CURVED SPACETIMES 

The main interpretational difficulties of GR are the absence of local 
conservation laws for energy-momentum and the nonexistence of inertial 
coordinate systems. The energy-momentum tensor of material sources T~ 
does not satisfy a continuity equation, while the energy-momentum of the 
free gravitational field is not a genuine tensor at all. 

The continuity equation for T~ alone could be secured and z~ could be 
dispensed with if the following four conditions are satisfied: 

r~r '~=O (8') 

where F~ v are Christoffel symbols. Indeed, the above formulas are equivalent 
to the ordinary continuity equations for the tensor density 

T v) = o (8")  
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If the formulas (8) hold, then the energy-momentum of the sources alone is 
locally conserved. Consequently, no exchange of energy-momentum between 
the sources and the free gravitational field (waves) would occur. Thus, the 
above formulas may be satisfied only in the cases of gravitationally station- 
ary fields. 

Definition. If by a special choice of the coordinate system the conditions 
(8) may be satisfied, then the field is gravitationally stationary and the 
respective system of coordinates will be called inertial. 

Indeed, the name "inertial" is justified since it is only by transition to 
any other coordinate system that some pseudodynamical effects could appear 
imitating the emission, absorption, and scattering of gravitational waves, 
but interpretable as nothing else but coordinate effects. 

Thus, the concept of inertial coordinate systems makes sense even in 
the presence of gravitation, but it is limited to gravitationally stationary 
fields. Nevertheless, it may be shown that this idea is useful even in the 
general case of arbitrary, nonstationary, or turbulent fields, since we may 
introduce some coordinate systems as similar as possible to inertial ones and 
call them "quasiinertial." Their introduction will enable us to distinguish 
mere coordinate effects from truly dynamical ones even in the cases of 
strongly nonstationary field configurations. 

6. FUSION OF CANONICAL EXTENSIONS WITH THE 
CONCEPT OF INERTIA 

In Section 2 a generally canonical (instead of generally covariant) for- 
malism was formulated by supplementing the Lagrangian by an additional 
term (2) involving quadratically the terms U~ involving ~0. linearly and such 
that their vanishing means a special choice of coordinates. This formalism 
may be combined with the idea of inertial systems described in Section 5 in 
the following way: Inasmuch as equations (4) are second-order equations 
for all metric tensor components g.v, we may dispose freely of the initial 
values of g0. (or at least of g00) as well as of their first-order time derivatives, 
whereby the coordinate system will become uniquely determined except for 
suitable boundary conditions at spacelike infinity. Instead of initial condi- 
tions for go. and their time derivatives, we may introduce initial and final 
conditions at the two time instants t~ and t/. We shall choose such mixed 
initial-final conditions in such a way that the coordinate system will become 
instantaneously inertial at these time instants 

F~vT'V=O at tiand t s (9) 
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A coordinate system following from equations (4) supplemented by the 
conditions (9) deserves to be called "quasi-inertial." In classical theory it 
exists always, even in the case of  nonstationary, turbulent fields. Nonetheless, 
neither emission nor  absorption nor  scattering of  free gravitational waves is 
observable at the very instants of initial and final measurements. 

In quantum theory the situation is not so simple. The conditions (9) 
must be regarded as conditions upon the state vector and one has a problem 
of  their compatibility. But it is also sufficient to assume only one condition 
at the initial time instant 

Fo Tuv-- 0 , v -  - v at ti (10) 

in order to secure a quasi-inertial situation at the initial instant of  state 
preparation and to avoid the appearance of  gravitons in statu nascendi. The 
coordinate system satisfying such initial condition is not fully determined, 
which accounts for quantum fluctuations not only of  the metric, but also of  
the system of  reference. 


